国家公务员网 地方站:
您的当前位置:四川公务员考试网 >> 时政要闻 >> 每日练习

2020年四川公务员考试行测每日一练:数学运算(7.22)

发布:2020-07-22 08:57:46    来源:四川公务员考试网 字号: | | 我要提问我要提问
  根据历年四川公务员考试时间安排,四川公务员考试一年举行两次,2020年上半年四川公务员考试公告受到疫情影响,已于6月8日公布,笔试时间为2020年7月25日,留给考生的备考时间不多了,如何在冲刺阶段夺取高分,推荐2020年四川公考冲刺模拟卷及配套课程(点击订购),4大亮点助力成“公”!下面四川公务员考试网就行测科目为考生提供一些练习。
  接下来完成1-5题!
  1、某款服装降价促销后,每天销量翻倍,获得的总利润增加50%,问每套服装降价的金额为:

  A、销售的1/4

  B、销售价的1/8

  C、利润额的1/2

  D、利润的1/4

  2、甲、乙、丙、丁四个工厂共有100名高级技工。其中甲乙两个工厂的高级技工数量比为12:25,丙工厂的高级技工人数比丁工厂少4人,问丁工厂的高级技工人数比甲工厂:

  A、多6人

  B、少6人

  C、多9人

  D、少9人

  3、某公司有38名男员工,27名女员工。现要参加集团组织的羽毛球比赛,如采取自由报名的形式,至少有多少名员工报名才能保证一定能从报名者中选出男女选手各8名参赛?

  A、65

  B、46

  C、35

  D、16

  4、王大妈在市场承包了一个摊位卖水果,一天收摊后清点钱数时,王大妈发现手上有100元、50元和10元的钞票共48张,合计1760元,其中50元比10元多两张,问100元有多少张?

  A、8

  B、6

  C、4

  D、2

  5、将白 、蓝、红三种颜色的背包装到纸箱里,每个纸箱里放5个背包,颜色任意,质监部门需要对产品进行拆箱检查,问至少选多少个纸箱,才能保证一定有两个纸箱里三种颜色的背包数量都一致?

  A、20

  B、19

  C、22

  D、21

 
 
  四川公务员考试网答案与解析

  1、D

  第一步:分析问题

  本题为经济利润问题,未给出具体数值,故可采用赋值法。由于总利润=单件利润×销量,题干给出后来总利润与原总利润的关系,故可根据总利润之间的关系及销量间的关系,找出单件利润之间的关系,求出找出每套服装降价的金额。

  第二步:计算过程

  由于每天销量翻倍,故可将原来每天的销量赋值为1,则降价促销后每天的销量为2;

  由于获得的总利润增长50%,故将原来每天的总利润赋值为2,则降价促销后每天的总利润为2×(1+50%)=3。

  则原来的单件利润为:2/1=2,降价促销后的单件利润为:3/2=1.5。由于每套服装成本不变,单件利润减少了:2-1.5=0.5,即降价的金额为0.5。由于原单件利润为2,0.5/2=1/4,可知每套服装降价的金额为利润的1/4。

  第三步:再次标注答案

  故正确答案为D。

  2、D

  第一步:分析问题

  题干中给出甲、乙两工厂人数的比例关系,故可得出甲、乙两厂人数之和满足的倍数关系,结合丙与丁两厂的人数及四个工厂的总人数,根据奇偶特性,找出甲、乙两厂的总人数,进而求出各厂的人数即可。

  第二步:计算过程

  根据“甲乙两个工厂的高级技工数量比为12:25”,可知甲厂人数为12的倍数,乙厂人数为25的倍数,甲乙两工厂人数为12+25=37的倍数;由于四个工厂共100人,故100以内又是37的倍数的只有37、74。

  根据“丙工厂的高级技工人数比丁工厂少4人”,可知:丁-丙=4,二者之差为偶数,故丁与丙之和也为偶数,由于四厂总人数为100是偶数,因此甲、乙两厂的总人数也为偶数,故甲、乙两厂人数之和只能为74,进而可得甲厂的人数为24人、乙厂的人数为50人。丁、丙两厂之和为:100-74=26。

  结合:丁-丙=4,丁+丙=26,解得丁=15,丙=11。

  由于24-15=9,可知丁工厂的高级技工人数比甲工厂少9人。

  第三步:再次标注答案

  故正确答案为D。

  3、B

  第一步:分析问题

  本题中出现“至少……保证……”,故为最值问题中的最不利构造问题,解题思路为:最不利+1。

  第二步:计算过程

  要保证一定能从报名者中选出男女选手各8名参赛,则最不利的情况为某一性别的人数全部都报名了,另一性别只选出来的7人。由于男员工38人>女员工27人,故最不利的情况即为男员工的全部都报名,而女员工只报名了7人。因此要保证一定能从报名者中选出男女选手各8名参赛,至少有38+7+1=46名员工报名。

  第三步:再次标注答案

  故正确答案为B。

  4、C

  第一步:分析问题

  本题给出各面额的总张数及合计钱数,且给出50元比10元面额多两张,故可将10元面额的钞票设为x张,则50元面额的钞票为x+2张,将100元面额的钞票设为y张,再根据总张数及合计钱数列方程、解方程即可。

  第二步:计算过程

  根据“100元、50元和10元的钞票共48张”,可知:y+(x+2)+x=48,化简得:y+2x=46,记为①;

  由于合计1760元,可知:100y+50(x+2)+10x=1760,化简得:5y+3x=83,记为②;

  联立两个方程,解得:x=21,y=4。即100元的钞票有4张。

  第三步:再次标注答案

  故正确答案为C。

  5、C

  第一步:分析问题

  本题中出现“至少……保证……”,故为最值问题中的最不利构造问题,解题思路为:最不利+1。要保证一定有两个纸箱里三种颜色的背包数量都一致,先找出每个纸箱中各色背包的个数情况,把最不利的情况全部找出来,再加1,就能够满足题干的要求。

  第二步:计算过程

  因为每个纸箱里有5个背包,则每个纸箱里各色背包的个数有如下分类:

  有一种颜色的5个,其它两种颜色的各0个,有3种情况;

  有一种颜色的4个,其它两种颜色分别为0个和1个,有\种情况;

  有一种颜色的3个,其它两种颜色分别为0个和2个,有\种情况;

  有一种颜色的3个,其它两种颜色各为1个,有3种情况;

  有一种颜色的2个,其它两种颜色分别为1个和2个,有3种情况;

  综上,共有3+6+6+3+3=21种可能情况,根据最不利原则,至少要选21+1=22个纸箱,才能保证一定两个纸箱里三种颜色的背包数量都一致。

  第三步:再次标注答案

  故正确答案为C。
第一时间获取更多重要信息

可添加二维码

微信公众号 : scgwyorg

四川公务员考试网微信公众号


点击分享此信息:
没有了   |   下一篇 »
RSS Tags
返回网页顶部
CopyRight 2020 http://www.scgwy.org/ All Rights Reserved 苏ICP备15022290号-12
(任何引用或转载本站内容及样式须注明版权)XML